
Schöck Isokorb® T Typ SK

Schöck Isokorb® T Typ SK

Tragendes Wärmedämmelement für frei auskragende Stahlkonstruktionen mit Anschluss an Stahlbetondecken. Das Element überträgt negative Momente und positive Querkräfte. Ein Element mit der Tragstufe MM überträgt zusätzlich positive Momente und negative Querkräfte.

Elementanordnung | Einbauschnitte

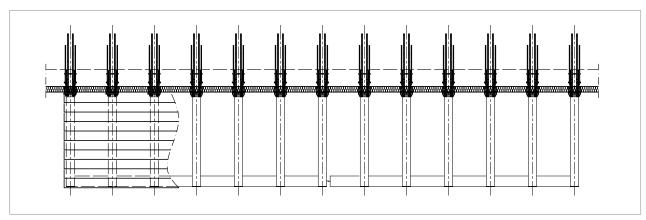


Abb. 104: Schöck Isokorb® T Typ SK: Balkon frei auskragend

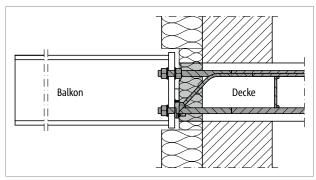


Abb. 105: Schöck Isokorb® T Typ SK: Anschluss an die Stahlbetondecke; Dämmkörper innerhalb der Außendämmung

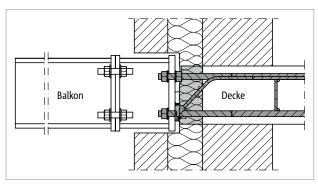


Abb. 106: Schöck Isokorb® T Typ SK: Dämmkörper innerhalb der Kerndämmung; bauseitiges Verbindungsstück zwischen dem Isokorb® und dem Balkon schafft Flexibilität im Bauablauf

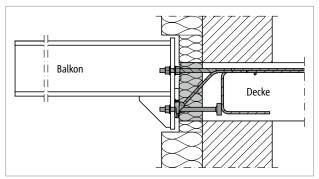


Abb. 107: Schöck Isokorb® T Typ SK: Barrierefreier Übergang durch Höhenversatz

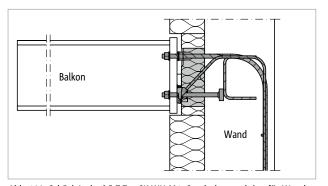


Abb. 108: Schöck Isokorb® T Typ SK-WU-M1: Sonderkonstruktion für Wandanschluss auf Basis der Haupttragstufe M1 für Wandstärken ab 200 mm

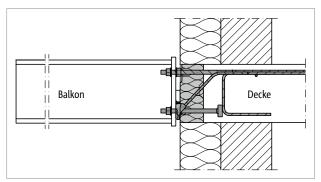


Abb. 109: Schöck Isokorb® T Typ SK: Dämmkörper schließt mit Hilfe des Deckenvorsprungs außen bündig mit der Dämmung der Wand ab, dabei sind die seitlichen Randabstände zu beachten

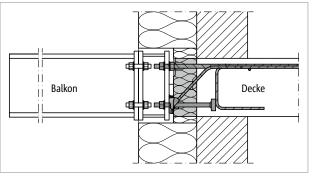


Abb. 110: Schöck Isokorb® T Typ SK: Anschluss des Stahlträgers an einen Adapter, der die Dicke der Außendämmung ausgleicht

Sonderkonstruktionen

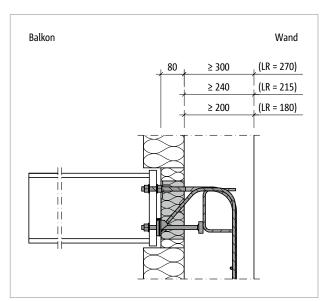


Abb. 111: Schöck Isokorb® T Typ SK-WU: Sonderkonstruktion für Wandanschluss

Sonderkonstruktionen

- Die dargestellten geometrischen Abmessungen können mit Sonderkonstruktionen ausgeführt werden. Ansprechpartner ist die Anwendungstechnik.
- Bemessungwerte können von den Standard-Produkten abweichen.
- Die Einbindelänge LR ist für die Sonderkonstruktionen in der Typenbezeichnung mitzuführen: T Typ SK-WU-M1-V1-R0-LR270-X80-H200-L180-D16-1.0

tahl – Stahlbeton

Produktvarianten | Typenbezeichnung | Sonderkonstruktionen

Varianten Schöck Isokorb® T Typ SK

Die Ausführung des Schöck Isokorb® T Typ SK kann wie folgt variiert werden:

Haupttragstufe:

Momententragstufe M1, MM1, MM2

Nebentragstufe:

Bei Haupttragstufe M1: Querkrafttragstufe V1, V2 Bei Haupttragstufe MM1: Querkrafttragstufe VV1 Bei Haupttragstufe MM2: Querkrafttragstufe VV1, VV2

Feuerwiderstandsklasse:

RΛ

Dämmkörperdicke:

X80 = 80 mm

■ Isokorb® Höhe:

Laut Zulassung H = 180 mm bis H = 280 mm, abgestuft in 10-mm-Schritten

■ Isokorb® Länge:

L180 = 180 mm

Gewindedurchmesser:

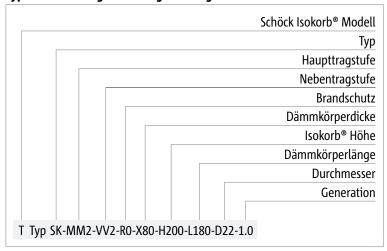
D16 = M16 bei Haupttragstufe M1, MM1 D22 = M22 bei Haupttragstufe MM2

Generation:

1.0

Varianten Einbauhilfe Isokorb® T Typ SK Part M

Die Ausführung der Schöck Einbauhilfe Isokorb® T Typ SK Part M kann wie folgt variiert werden:

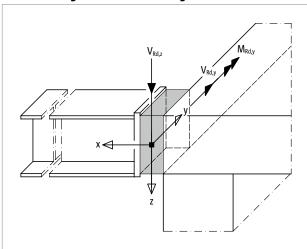

Haupttragstufe:

Momententragstufe T Typ SK-M1, T Typ SK-MM1

Momententragstufe T Typ SK-MM2

Die Einbauhilfen Isokorb® T Typ SK-M1/MM1 Part M H180–280 beziehungsweise Isokorb® T Typ SK-MM2 Part M H180–280 gibt es jeweils nur in der Bauhöhe h = 260 mm, Darstellung siehe Seite 25. Damit kann der Schöck Isokorb® T Typ SK in den Ausführungen H180 bis H280 installiert werden.

Typenbezeichnung in Planungsunterlagen


Sonderkonstruktionen

Anschlusssituationen, die mit den in dieser Information dargestellten Standard-Produktvarianten nicht realisierbar sind, können bei der Anwendungstechnik (Kontakt siehe Seite 3) angefragt werden.

Stahl – Stahlbeton

Vorzeichenregel | Bemessung

Vorzeichenregel für die Bemessung

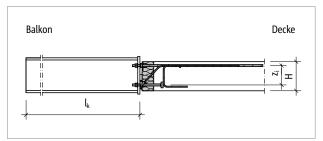


Abb. 113: Schöck Isokorb® T Typ SK: Statisches System; Bemessungswerte beziehen sich auf die dargestellte Kraglänge l_k

Abb. 112: Schöck Isokorb® T Typ SK: Vorzeichenregel für die Bemessung

II Hinweise zur Bemessung

- Der Anwendungsbereich des Schöck Isokorb® erstreckt sich auf Decken- und Balkonkonstruktionen mit vorwiegend ruhenden, gleichmäßig verteilten Verkehrslasten nach DIN EN 1991-1-1/NA, Tabelle 6.1DE.
- Für die beiderseits des Isokorb® anschließenden Bauteile ist ein statischer Nachweis vorzulegen.
- Je anzuschließender Stahlkonstruktion sind mindestens zwei Schöck Isokorb® T Typ SK anzuordnen. Diese sind so untereinander zu verbinden, dass sie gegen Verdrehen in ihrer Lage gesichert sind, da der einzelne Isokorb® rechnerisch keine Torsion (also kein Moment M_{Ed,x}) aufnehmen kann.
- Bei der indirekten Lagerung des Schöck Isokorb® T Typ SK ist insbesondere die Lastweiterleitung im Stahlbetonteil durch den Tragwerksplaner nachzuweisen.
- Die Bemessungswerte werden auf die Hinterkante der Stirnplatte bezogen.
- Das Nennmaß c_{nom} der Betondeckung nach DIN EN 1992-1-1 (EC2), 4.4.1 und DIN EN 1992-1-1/NA beträgt im Innenbereich 20 mm.
- Alle Varianten des Schöck Isokorb® T Typ SK können positive Querkräfte übertragen. Für negative (abhebende) Querkräfte sind die Haupttragstufen MM1 oder MM2 zu wählen.
- Für die Berücksichtigung der abhebenden Kräfte reichen bei Stahlbalkonen oder -vordächern oft zwei Schöck Isokorb® T Typ SK-MM1-VV1 aus, selbst wenn für die Gesamtbemessung weitere T Typ SK erforderlich sind.

Innerer Hebelarm

Schöck Isokorb® T Tyj	SK SK	M1, MM1	MM2	
Innerer Hebelarm b	ei	z _i [mm]		
	180	113	108	
	200	133	128	
Isakarh® Häha H [mm]	220	153	148	
Isokorb® Höhe H [mm]	240	173	168	
	260	193	188	
	280	213	208	

Bemessung

Bemessung bei positiver Querkraft und negativem Moment

Schöck Isokorb® T Ty	p SK	N	Л1-V1, ММ1-VV	1	M1-V2			
		Betonfestigkeitsklasse ≥ C20/25						
Bemessungswerte l	noi	V _{Rd,z} [kN/Element]						
beniessungswerte i	Jei	10	20	30	30	40	45	
				M _{Rd,y} [kNm	/Element]			
	180	-11,0	-9,9	-8,9	-8,9	-7,8	-7,3	
	200	-12,9	-11,7	-10,4	-10,4	-9,2	-8,5	
Isakarh® Häha H [mm]	220	-14,9	-13,4	-12,0	-12,0	-10,5	-9,8	
Isokorb® Höhe H [mm]	240	-16,8	-15,2	-13,6	-13,6	-11,9	-11,1	
	260	-18,7	-16,9	-15,1	-15,1	-13,3	-12,4	
	280	-20,7	-18,7	-16,7	-16,7	-14,7	-13,7	
		$V_{Rd,y}$ [kN			/Element]			
	180–280		±2,5			±4,0		
				N _{Rd,x} [kN/	Element]			
	180-280		Bem	essung mit Norm	alkraft siehe Sei	te 86		

Bemessung bei negativer Querkraft und positivem Moment

Schöck Isokorb® T Ty	p SK	MM1-VV1	
Danasan anno de	:	Betonfestigkeitsklasse ≥ C20/25	
Bemessungswerte l	pei	M _{Rd,y} [kNm/Element]	
	180	9,8	
	200	11,5	
Isokorb® Höhe H [mm]	220	13,2	
isokoru - none n [ililil]	240	14,9	
	260	16,7	
	280	18,4	
		V _{Rd,z} [kN/Element]	
	180-280	-12,0	
		V _{Rd,y} [kN/Element]	
	180-280	±2,5	
		N _{Rd,x} [kN/Element]	
	180-280	Bemessung mit Normalkraft siehe Seite 86	

Schöck Isokorb® T Typ SK	M1-V1 , MM1-VV1	M1-V2		
Bestückung bei	Isokorb® Länge [mm]			
	180	180		
Zugstäbe	2 Ø 14	2 Ø 14		
Querkraftstäbe	2 Ø 8	2 Ø 10		
Drucklager / Druckstäbe	2 Ø 14	2 Ø 14		
Gewinde	M16	M16		

II Hinweise zur Bemessung

Das aufnehmbare Moment $M_{Rd,y}$ hängt von den aufnehmbaren Querkräften $V_{Rd,z}$ und $V_{Rd,y}$ ab. Für negative Momente $M_{Rd,y}$ können Zwischenwerte linear interpoliert werden. Eine Extrapolation in den Bereich kleinerer aufnehmbarer Querkräfte ist nicht zulässig.

• Die maximalen Bemessungswerte der einzelnen Querkrafttragstufen sind zu beachten:

V1, VV1: max. $V_{Rd,z} = 30.9 \text{ kN}$ V2: max. $V_{Rd,z} = 48.3 \text{ kN}$

Rand- und Achsabstände sind zu beachten, siehe Seiten 90 und 91.

Bemessung

Bemessung bei positiver Querkraft und negativem Moment

Schöck Isokorb® T Ty	p SK		MM2-VV1			MM2-VV2	
Dominion de la c		Betonfestigkeitsklasse ≥ C20/25					
				$V_{Rd,z}$ [kN/	Element]		
Bemessungswerte l	pei	25	35	45	45	55	65
				M _{Rd,y} [kNm	/Element]		
	180	-22,6	-21,6	-20,6	-20,6	-19,6	-18,6
	200	-26,8	-25,6	-24,4	-24,4	-23,2	-22,0
Isakarh® Häha H [mm]	220	-31,0	-29,6	-28,2	-28,2	-26,8	-25,4
Isokorb® Höhe H [mm]	240	-35,2	-33,6	-32,1	-32,1	-30,4	-28,9
	260	-39,4	-37,6	-35,9	-35,9	-34,1	-32,3
	280	-43,6	-41,6	-39,7	-39,7	-37,3	35,7
				V _{Rd,y} [kN/	Element]		
180–280		±4,0 ±6,5			±6,5		
				N _{Rd,x} [kN/	Element]		
	180-280		Bem	essung mit Norm	alkraft siehe Sei	te 86	

Bemessung bei negativer Querkraft und positivem Moment

Schöck Isokorb® T Ty	p SK	MM2-VV1	MM2-VV2		
Domossum asuvorto l		Betonfestigkeitsklasse ≥ C20/25			
Bemessungswerte l	pei	M _{Rd,y} [kNm/Element]			
	180	11,7	11,0		
	200	13,8	13,0		
Isakarh® Häha H [mm]	220	16,0	15,0		
Isokorb® Höhe H [mm]	240	18,1	17,0		
	260	20,3	19,1		
	280	22,5	21,1		
		V _{Rd,z} [kl	N/Element]		
	180-280	-12,0			
		V _{Rd,y} [kl	N/Element]		
	180-280	±4,0	±6,5		
		N _{Rd,x} [kl	N/Element]		
	180-280	Bemessung mit Normalkraft siehe Seite 86			

Schöck Isokorb® T Typ SK	MM2-VV1	MM2-VV2		
Bestückung bei	Isokorb® Länge [mm]			
	180	180		
Zugstäbe	2 Ø 20	2 Ø 20		
Querkraftstäbe	2 Ø 10	2 Ø 12		
Drucklager / Druckstäbe	2 Ø 20	2 Ø 20		
Gewinde	M22	M22		

II Hinweise zur Bemessung

Das aufnehmbare Moment $M_{Rd,y}$ hängt von den aufnehmbaren Querkräften $V_{Rd,y}$ ab. Für negative Momente $M_{Rd,y}$ können Zwischenwerte linear interpoliert werden. Eine Extrapolation in den Bereich kleinerer aufnehmbarer Querkräfte ist nicht zulässig.

• Die maximalen Bemessungswerte der einzelnen Querkrafttragstufen sind zu beachten:

VV1: $max. V_{Rd,z} = 48,3 kN$ VV2: $max. V_{Rd,z} = 69,5 kN$

Rand- und Achsabstände sind zu beachten, siehe Seiten 90 und 91.

Bemessung mit Normalkraft

Vorzeichenregel für die Bemessung

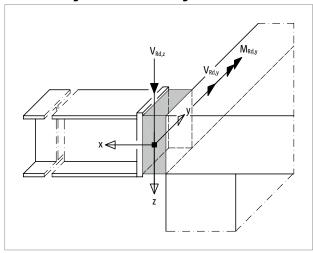


Abb. 114: Schöck Isokorb® T Typ SK: Vorzeichenregel für die Bemessung

Bemessung mit Normalkraft bei positiver Querkraft und negativem Moment

Die Berücksichtigung einer aufnehmbaren Normalkraft $N_{Rd,x}$ bei der Bemessung des Schöck Isokorb® T Typ SK erfordert eine Abminderung des aufnehmbaren Moments $M_{Rd,y}$. $M_{Rd,y}$ wird nachfolgend auf der Grundlage von Randbedingungen ermittelt. Festgelegte Randbedingungen:

Moment $M_{Ed,y} < 0$

Normalkraft $|N_{Rd,x}| = |N_{Ed,x}| \le B [kN]$

Querkraft $0 < V_{Ed,z} \le max. V_{Rd,z}$ [kN], siehe Hinweise zur Bemessung Seite 84 bis Seite 85.

Daraus folgt für das aufnehmbare Moment M_{Rd,y} des Schöck Isokorb® T Typ SK:

Bei $N_{Ed,x} < 0$ (Druck):

 $M_{Rd,y} = -[min (A \cdot z_i \cdot 10^{-3}; (B - |N_{Ed,x}| / 2 - 0.94 \cdot V_{Ed,z}) \cdot z_i \cdot 10^{-3})] [kNm/Element]$

Bei $N_{Ed,x} > 0$ (Zug):

 $M_{Rd,y} = -[min ((A - N_{Ed,x} / 2) \cdot z_i \cdot 10^{-3}; (B - 0.94 \cdot V_{Ed,z}) \cdot z_i \cdot 10^{-3})] [kNm/Element]$

Bemessung bei Betonfestigkeitsklasse ≥ C20/25:

T Typ SK-M1: A = 97.5; B = 106.5T Typ SK-MM1: A = 97.5; B = 108.1T Typ SK-MM2: A = 210.2; B = 233.1

A: Aufnehmbare Kraft in den Zugstäben des Isokorb® [kN]

B: Aufnehmbare Kraft in den Drucklagern/Druckstäben des Isokorb® [kN]

z_i = Innerer Hebelarm [mm], siehe Tabelle Seite 83

Bemessung mit Normalkraft

- N_{Ed,x} > 0 (Zug) ist bei T Typ SK nur für die Haupttragstufen MM1 und MM2 zulässig.
- Für die aufnehmbare Querkraft V_{Rd,y} gelten die Bemessungswerte gemäß der Tabellen Seite 84 bis Seite 85.
- Der Einfluss der Normalkraft N_{Ed,x} auf das aufnehmbare Moment M_{Rd,y} bei V_{Ed,z} < 0 kann bei der Anwendungstechnik erfragt werden.

Stahl – Stahlbeton

Verformung/Überhöhung

Verformung

Die in der Tabelle angegebenen Verformungsfaktoren ($\tan \alpha$ [%]) resultieren aus der Verformung des Schöck Isokorb® im Grenzzustand der Tragfähigkeit infolge einer Momentenbeanspruchung des Isokorb®. Sie dienen zur Abschätzung der erforderlichen Überhöhung. Die rechnerische Überhöhung des Balkons ergibt sich aus der Verformung der Stahlkonstruktion zuzüglich der Verformung aus dem Schöck Isokorb®. Die vom Tragwerksplaner/Konstrukteur in den Ausführungsplänen zu nennende Überhöhung des Balkons (Basis: errechnete Gesamtverformung aus Kragplatte + Deckendrehwinkel + Schöck Isokorb®) sollte so gerundet werden, dass die planmäßige Entwässerungsrichtung eingehalten wird (aufrunden: bei Entwässerung zur Gebäudefassade, abrunden: bei Entwässerung zum Kragplattenende).

Verformung (w_{ii}) infolge des Schöck Isokorb®

 v_{ij} = tan $\alpha \cdot l_k \cdot (M_{Ed,GZG} / M_{Rd}) \cdot 10 [mm]$

Einzusetzende Faktoren:

 $tan \alpha$ = Tabellenwert einsetzen l_k = Auskragungslänge [m]

M_{Ed,GZG} = Maßgebendes Biegemoment [kNm] im Grenzzustand der Gebrauchstauglichkeit

(GZG) für die Ermittlung der Verformung w_ü [mm] aus dem Schöck Isokorb[®]. Die für die Verformung anzusetzende Lastkombination wird vom Tragwerksplaner festgelegt.

(Empfehlung: Lastkombination für die Ermittlung der Überhöhung $w_{\bar{u}}$: g + 0,3 • q;

 $M_{\text{Ed,GZG}}$ im Grenzzustand der Gebrauchstauglichkeit ermitteln)

M_{Rd} = Maximales Bemessungsmoment [kNm] des Schöck Isokorb®

Berechnungsbeispiel siehe Seite 111

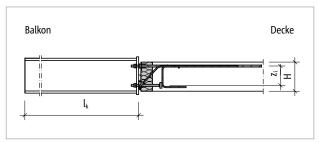


Abb. 115: Schöck Isokorb® T Typ SK: Statisches System; Bemessungswerte beziehen sich auf die dargestellte Kraglänge l_k

Schöck Isokorb® T Typ SK		M1-V1	M1-V2	MM1-VV1	MM2-VV1	MM2-VV2	
Verformungsfaktoren	bei	an lpha [%]					
	180	0,8	0,7	1,2	1,5	1,5	
	200	0,7	0,6	1,0	1,3	1,2	
Isokorb® Höhe H [mm]	220	0,6	0,5	0,9	1,1	1,1	
isokoru- none n [iiiiii]	240	0,5	0,5	0,8	1,0	0,9	
	260	0,5	0,4	0,7	0,9	0,9	
	280	0,4	0,4	0,6	0,8	0,8	

itahl – Stahlbeton

Drehfedersteifigkeit

Drehfedersteifigkeit

Für die Nachweise im Grenzzustand der Gebrauchstauglichkeit ist die Drehfedersteifigkeit des Schöck Isokorb® zu berücksichtigen. Sofern eine Untersuchung des Schwingungsverhaltens der anzuschließenden Stahlkonstruktion erforderlich ist, sind die aus dem Schöck Isokorb® resultierenden zusätzlichen Verformungen zu berücksichtigen.

Schöck Isokorb® T Typ SK		M1-V1	M1-V2	MM1-VV1	MM2-VV1	MM2-VV2	
Drehfedersteifigkeit bei		C [kNm/rad]					
	180	1300	1300	800	1500	1500	
Isokorb® Höhe H [mm]	200	1700	1700	1200	2000	2000	
	220	2300	2300	1500	2800	2800	
	240	3100	2700	2000	3400	3600	
	260	3500	3800	2500	4300	4000	
	280	4800	4200	3200	5300	5000	

Dehnfugenabstand

Maximaler Dehnfugenabstand

Im außenliegenden Bauteil sind Dehnfugen anzuordnen. Maßgebend für die Längenänderung aus der Temperaturverformung ist der maximale Abstand e der Achse des äußersten Schöck Isokorb® T Typ SK. Hierbei kann das Außenbauteil über den Schöck Isokorb® seitlich überstehen. Bei Fixpunkten wie z. B. Ecken gilt die halbe maximale Länge e vom Fixpunkt aus. Der Ermittlung der zulässigen Fugenabstände ist eine mit den Stahlträgern fest verbundene Balkonplatte aus Stahlbeton zugrunde gelegt. Sind konstruktive Maßnahmen zur Verschieblichkeit zwischen der Balkonplatte und den einzelnen Stahlträgern ausgeführt, so sind nur die Abstände der unverschieblich ausgebildeten Anschlüsse maßgebend, siehe Detail.

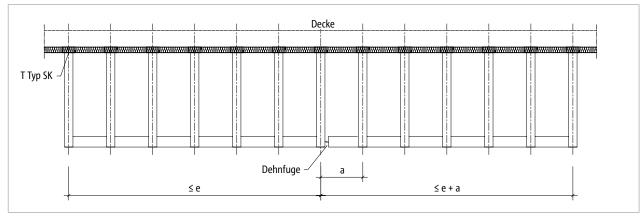


Abb. 116: Schöck Isokorb® T Typ SK: Maximaler Dehnfugenabstand e

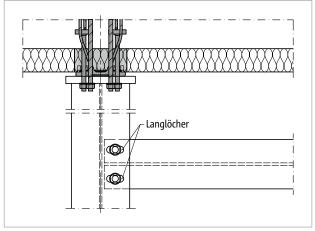
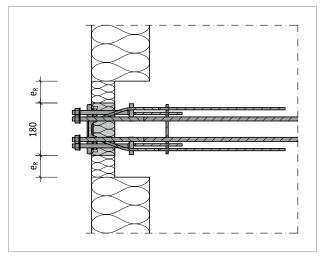


Abb. 117: Schöck Isokorb® T Typ SK: Dehnfugendetail zur Ermöglichung der Verschieblichkeit bei Temperaturdehnung

Schöck Isokorb® T Typ SK		M1, MM1	MM2
Maximaler Dehnfugenabstand bei		e [m]	
Dämmkörperdicke [mm]	80	5,7	3,5


Dehnfugen

• Wenn das Dehnfugendetail temperaturbedingte Verschiebungen des Querträgerüberstands der Länge a dauerhaft zulässt, darf der Dehnfugenabstand auf maximal e + a erweitert werden.

Randabstände

Randabstände

Der Schöck Isokorb® T Typ SK muss so positioniert werden, dass Mindestrandabstände in Bezug zum inneren Stahlbetonbauteil eingehalten werden:

Decke

29 \(\frac{1}{8} \)

e_R ≥ 65

Abb. 118: Schöck Isokorb® T Typ SK: Randabstände

Abb. 119: Schöck Isokorb® T Typ SK: Randabstände an der Außenecke bei senkrecht zueinander angeordneten Isokorb®

Aufnehmbare Querkraft V_{Rd,z} in Abhängigkeit des Randabstands

Schöck Isol	Schöck Isokorb® T Typ SK		M1-V2	MM1-VV1	MM2-VV1	MM2-VV2
Bemessu	ngswerte bei	Betonfestigkeitsklasse ≥ C20/25				
Isokorb® Höhe H [mm]	Randabstand e _R [mm]	V _{Rd,z} [kN/Element]				
180-190	30 ≤ e _R < 74					
200-210	30 ≤ e _R < 81	14,2	20.4	20,4 14,2	21,3	28,5
220-230	$30 \le e_R < 88$		14,2 20,4			
240-280	30 ≤ e _R < 95					
180-190	e _R ≥ 74					
200-210	e _R ≥ 81	keine Abminderung erforderlich				
220–230	e _R ≥ 88					
240-280	e _R ≥ 95					

Randabstände

- Randabstände e_R < 30 mm sind nicht zulässig!
- Wenn zwei Schöck Isokorb® T Typ SK senkrecht zueinander an einer Außenecke angeordnet werden, sind Randabstände e_R ≥ 65 mm erforderlich.

Achsabstände

Achsabstände

Der Schöck Isokorb® T Typ SK muss so positioniert werden, dass Mindestachsabstände von Isokorb® zu Isokorb® eingehalten werden:

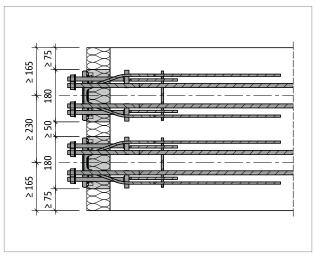
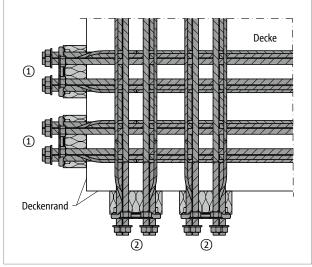


Abb. 120: Schöck Isokorb® T Typ SK: Achsabstand

Bemessungsschnittgrößen in Abhängigkeit des Achsabstands

Schöck Isok	orb® T Typ SK	M1, MM1, MM2
Bemessur	igswerte bei	Betonfestigkeitsklasse ≥ C20/25
Isokorb® Höhe H [mm]	Achsabstand e _A [mm]	V _{Rd,z} [kN/Element], M _{Rd,y} [kNm/Element]
180-190	e _A ≥ 230	
200-210	e _A ≥ 245	kaina Ahmindaruna arfardarlich
220-230	e _A ≥ 260	keine Abminderung erforderlich
240-280	e _A ≥ 270	


Achsabstände

- Die Tragfähigkeit des Schöck Isokorb® T Typ SK ist bei Unterschreitung der dargestellten Mindestwerte für den Achsabstand e_A abzumindern.
- Die abgeminderten Bemessungswerte können bei der Anwendungstechnik abgerufen werden. Kontakt siehe Seite 3.

Außenecke

Höhenversatz bei Außenecke

An einer Außenecke werden Schöck Isokorb® T Typ SK senkrecht zueinander angeordnet. Die Zug-, Druck- und Querkraftstäbe überschneiden sich. Deshalb sind die Schöck Isokorb® T Typ SK höhenversetzt anzuordnen. Dazu werden bauseitig 20 mm Dämmstreifen jeweils direkt unter beziehungsweise direkt über dem Dämmkörper des Schöck Isokorb® T Typ SK angeordnet.

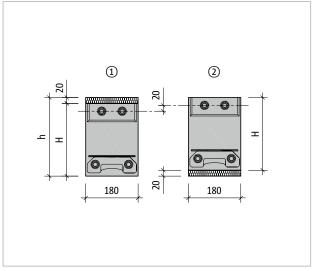


Abb. 121: Schöck Isokorb® T Typ SK: Außenecke

Abb. 122: Schöck Isokorb® T Typ SK: Anordnung mit Höhenversatz

Außenecke

- Die Ecklösung mit T Typ SK erfordert eine Deckendicke von h ≥ 200 mm!
- Bei der Ausführung eines Eckbalkons ist darauf zu achten, dass die 20 mm Höhendifferenz im Eckbereich auch bei den bauseitigen Stirnplatten zu berücksichtigen sind!
- Die Achs-, Element- und Randabstände des Schöck Isokorb® T Typ SK sind einzuhalten.

Produktbeschreibung

Abb. 123: Schöck Isokorb® T Typ SK-M1-V1: Grundriss

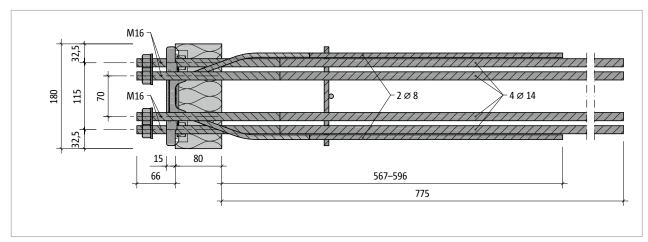


Abb. 124: Schöck Isokorb® T Typ SK-MM1-VV1: Grundriss

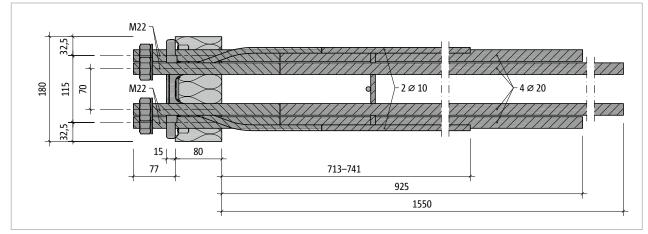


Abb. 125: Schöck Isokorb® T Typ SK-MM2-VV1: Grundriss

Produktinformationen

• T Typ SK: Die freie Klemmlänge beträgt 30 mm bei den Haupttragstufen M1, MM1 und 35 mm bei MM2.

Produktbeschreibung

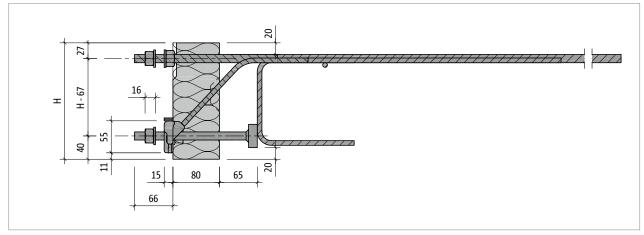


Abb. 126: Schöck Isokorb® T Typ SK-M1-V1: Produktschnitt

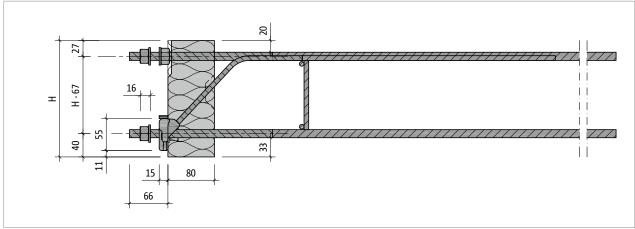


Abb. 127: Schöck Isokorb® T Typ SK-MM1-VV1: Produktschnitt

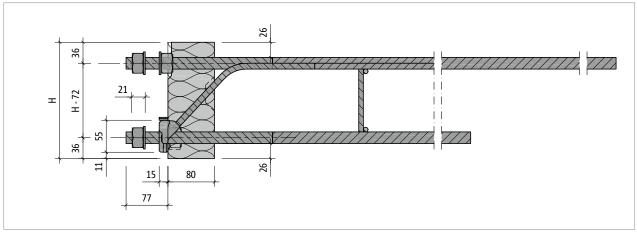


Abb. 128: Schöck Isokorb® T Typ SK-MM2-VV1: Produktschnitt

Produktinformationen

• T Typ SK: Die freie Klemmlänge beträgt 30 mm bei den Haupttragstufen M1, MM1 und 35 mm bei MM2.

Bauseitige Brandschutzausführung

Brandschutz

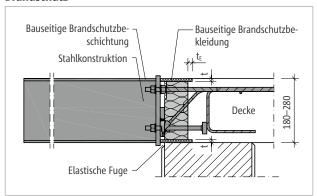


Abb. 129: Schöck Isokorb® T Typ SK: Bauseitige Brandschutzbekleidung T Typ SK, brandschutzbeschichtete Stahlkonstruktion; Schnitt

Brandschutz

- Der Schöck Isokorb® ist nur als Variante ohne Brandschutzausführung (-RO) zu erhalten.
- Die Brandschutzverkleidung des Schöck Isokorb® ist bauseitig zu planen und einzubauen. Hierbei gelten die gleichen bauseitigen Brandschutzmaßnahmen, die für die Gesamttragkonstruktion erforderlich sind.
- Siehe Erläuterungen Seite 17.

Schöck Isokorb® T Typ SK-M1

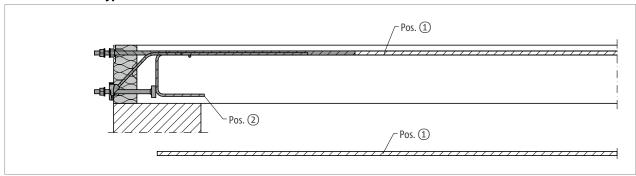


Abb. 130: Schöck Isokorb® T Typ SK-M1: Bauseitige Bewehrung, Schnitt

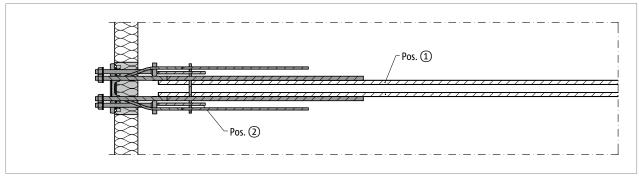


Abb. 131: Schöck Isokorb® T Typ SK-M1: Bauseitige Bewehrung, Grundriss

Schöck Isokor	b® T Typ SK		M1		
Bauseitige Bewehrung	Art der Lagerung	Höhe H [mm]	Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion		
Übergreifungsbewehrung					
Pos. 1 direkt/indirekt 180–280		180-280	2 Ø 14		
Rand- und Spaltzugbewehrung					
Pos. 2 direkt/indirekt 180–280		180-280	produktseitig vorhanden		

Info bauseitige Bewehrung

- Die Bewehrung der anschließenden Stahlbetonbauteile ist unter Berücksichtigung der erforderlichen Betondeckung möglichst dicht an den Dämmkörper des Schöck Isokorb® heranzuführen.
- Übergreifungsstöße gemäß DIN EN 1992-1-1 (EC2) und DIN EN 1992-1-1/NA.
- Der T Typ SK-M1 erfordert konstruktive Querbewehrung gemäß DIN EN 1992-1-1 (EC2) und DIN EN 1992-1-1/NA.

Schöck Isokorb® T Typ SK-MM1

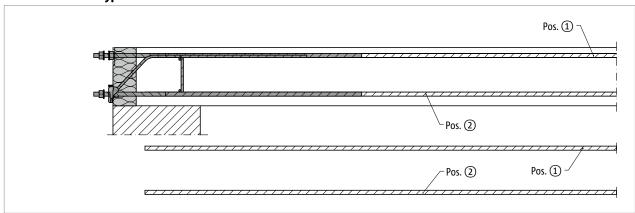


Abb. 132: Schöck Isokorb® T Typ SK-MM1-VV1: Bauseitige Bewehrung, Schnitt

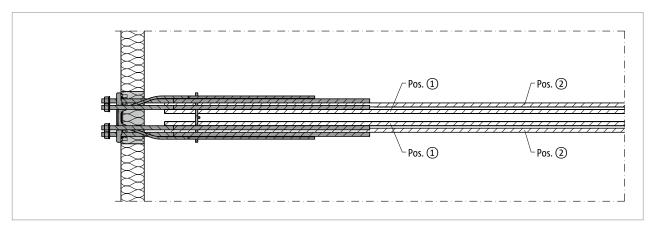


Abb. 133: Schöck Isokorb® T Typ SK-MM1-VV1: Bauseitige Bewehrung, Grundriss

Schöck Isokorb® T Typ SK			MM1		
Bauseitige Bewehrung	Art der Lagerung Höh		Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion		
Übergreifungsbewehrung					
Pos. 1	divolet/indivolet	180-280	nach Angabe des Tragwerksplaners		
Pos. 2	direkt/indirekt		in Zugzone erforderlich, nach Angabe des Tragwerksplaners		

II Info bauseitige Bewehrung

■ T Typ SK-MM1: Bei planmäßiger Einwirkung aus abhebenden Lasten (+M_{Ed}) kann zur Deckung der Zugkraftlinie ein Übergreifungsstoß mit der unteren Bewehrung des Isokorb® erforderlich werden. Diese Übergreifungsbewehrung wird gegebenenfalls vom Tragwerksplaner angegeben.

Schöck Isokorb® T Typ SK-MM2

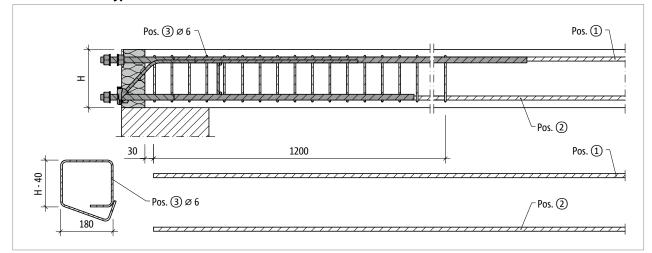


Abb. 134: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung mit Bügel Ø 6 mm; Schnitt

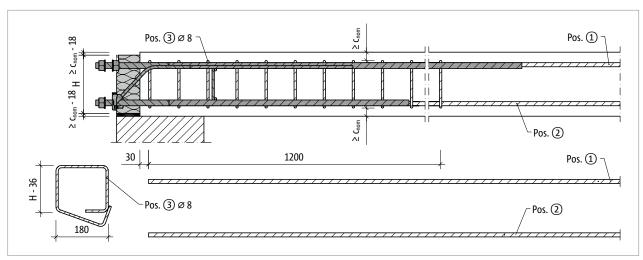


Abb. 135: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung mit Bügel Ø 8 mm; Schnitt

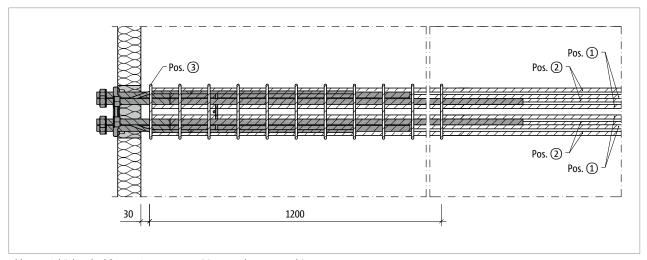


Abb. 136: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung, Grundriss

Schöck Isokorb® T Typ SK			MM2			
Bauseitige Bewehrung	Art der Lagerung Höhe H [mm]		Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion			
Übergreifungsbewehrung	Übergreifungsbewehrung					
Pos. 1	P. 1. P. P. 1.	180-280	nach Angabe des Tragwerksplaners			
Pos. 2	direkt/indirekt		in Zugzone erforderlich, nach Angabe des Tragwerksplaners			
Bügel						
Pos. 3 Variante A	مان مان المان	180-280	21 Ø 6/60 mm			
Pos. 3 Variante B	direkt/indirekt		13 Ø 8/100 mm			

II Info bauseitige Bewehrung

- T Typ SK-MM2: Bei planmäßiger Einwirkung aus abhebenden Lasten (+M_{Ed}) kann zur Deckung der Zugkraftlinie ein Übergreifungsstoß mit der unteren Bewehrung des Isokorb® erforderlich werden. Diese Übergreifungsbewehrung wird gegebenenfalls vom Tragwerksplaner angegeben.
- T Typ SK-MM2: außenliegende Querbewehrung in Form von Bügeln. Bei Verwendung von Stabdurchmesser Ø8 mm für die Bügel ist speziell zu prüfen ob die Betondeckung c_{nom} ausreicht. Gegebenenfalls ist die Plattendicke zu erhöhen.

Schöck Isokorb® T Typ SK-M1

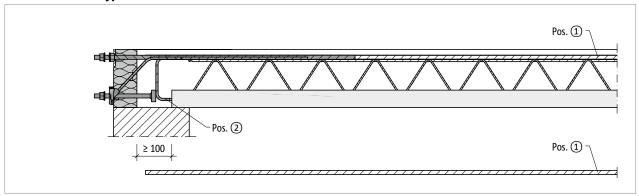


Abb. 137: Schöck Isokorb® T Typ SK-M1: Bauseitige Bewehrung bei Halbfertigteilbauweise, Schnitt

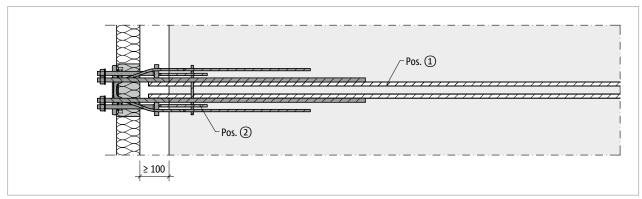


Abb. 138: Schöck Isokorb® T Typ SK-M1: Bauseitige Bewehrung bei Halbfertigteilbauweise, Grundriss

Schöck Isokor	b® T Typ SK		M1		
Bauseitige Bewehrung	Art der Lagerung	Höhe H [mm]	Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion		
Übergreifungsbewehrung					
Pos. 1 direkt/indirekt 180–280		180-280	2 Ø 14		
Rand- und Spaltzugbewehrung					
Pos. 2 direkt/indirekt 180–280			produktseitig vorhanden		

Info bauseitige Bewehrung

- Der T Typ SK-M1 erfordert konstruktive Querbewehrung gemäß DIN EN 1992-1-1 (EC2) und DIN EN 1992-1-1/NA.
- Beim Einsatz von Halbfertigteilplatten können die unteren Schenkel der werkseitigen Bügel bauseitig gekürzt und durch zwei passende Steckbügel Ø8 mm ersetzt werden.

Schöck Isokorb® T Typ SK-MM1

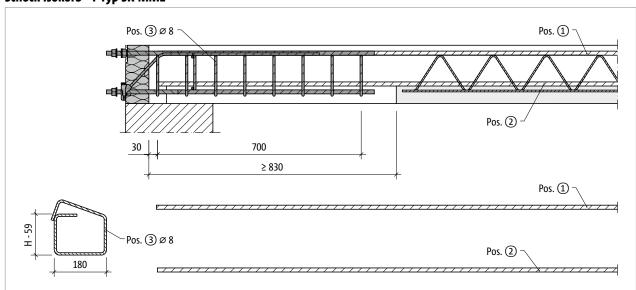


Abb. 139: Schöck Isokorb® T Typ SK-MM1-VV1: Bauseitige Bewehrung bei Halbfertigteilbauweise, Schnitt

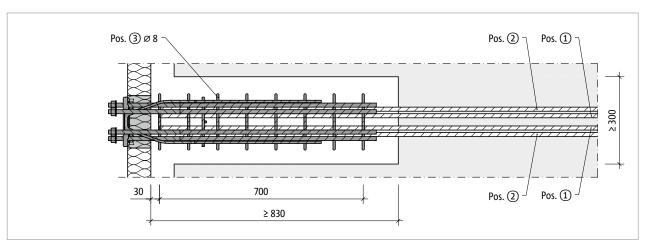


Abb. 140: Schöck Isokorb® T Typ SK-MM1-VV1: Bauseitige Bewehrung bei Halbfertigteilbauweise, Grundriss

Schöck Isokorb® T Typ SK			MM1		
Bauseitige Bewehrung	Art der Lagerung	Höhe H [mm]	Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion		
Übergreifungsbewehrung					
Pos. 1	10-14/0-10-14	180-280	2 Ø 14		
Pos. 2	direkt/indirekt		in Zugzone erforderlich, nach Angabe des Tragwerksplaners		
Bügel					
Pos. 3	direkt/indirekt 180–280		8 Ø 8/100 mm		

II Info bauseitige Bewehrung

- T Typ SK-MM1: Bei planmäßiger Einwirkung aus abhebenden Lasten (+M_{Ed}) kann zur Deckung der Zugkraftlinie ein Übergreifungsstoß mit der unteren Bewehrung des Isokorb® erforderlich werden. Diese Übergreifungsbewehrung wird gegebenenfalls vom Tragwerksplaner angegeben.
- T Typ SK-MM1: Die Zugstäbe des Schöck Isokorb® dürfen in der 1. Lage der oberen Deckenbewehrung liegen. Sie müssen nicht von den Bügeln Pos. 3 umfasst werden.

Schöck Isokorb® T Typ SK-MM2

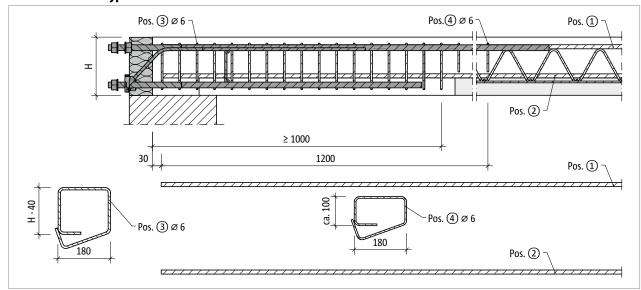


Abb. 141: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung bei Halbfertigteilbauweise mit Bügel Ø 6 mm; Schnitt

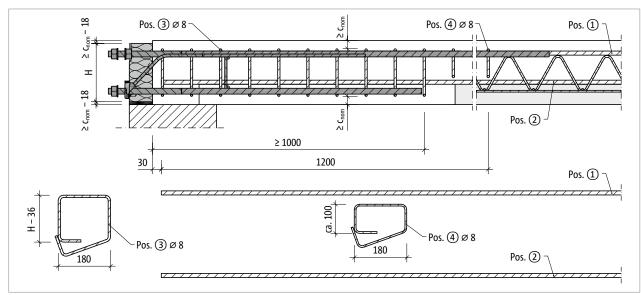


Abb. 142: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung bei Halbfertigteilbauweise mit Bügel Ø 8 mm; Schnitt

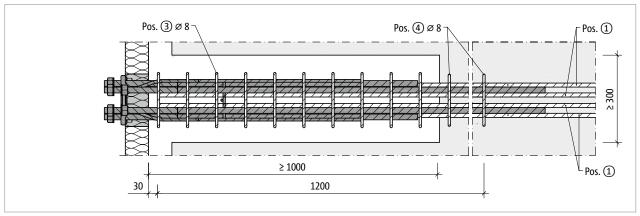


Abb. 143: Schöck Isokorb® T Typ SK-MM2: Bauseitige Bewehrung bei Halbfertigteilbauweise, Grundriss

Schöck Isokorb® T Typ SK			MM2			
Bauseitige Bewehrung	Art der Lagerung Höhe H [mm		Decke (XC1) Betonfestigkeitsklasse ≥ C20/25 Balkon Stahlkonstruktion			
Übergreifungsbewehrung	Übergreifungsbewehrung					
Pos. 1	ما المالية الم	180-280	4 Ø 14			
Pos. 2	direkt/indirekt		in Zugzone erforderlich nach Angabe des Tragwerksplaners			
Bügel						
Pos. 3 Variante A		180-280	17 Ø 6/60 mm			
Pos. 3 Variante B	direkt/indirekt		10 Ø 8/100 mm			
Pos. 4 Variante A			4 Ø 6/60 mm			
Pos. 4 Variante B			3 Ø 8/100 mm			

II Info bauseitige Bewehrung

- T Typ SK-MM2: außenliegende Querbewehrung in Form von Bügeln. Bei Verwendung von Stabdurchmesser Ø8 mm für die Bügel ist speziell zu prüfen ob die Betondeckung c_{nom} ausreicht. Gegebenenfalls ist die Plattendicke zu erhöhen.
- T Typ SK-MM2: Bei planmäßiger Einwirkung aus abhebenden Lasten (+M_{Ed}) kann zur Deckung der Zugkraftlinie ein Übergreifungsstoß mit der unteren Bewehrung des Schöck Isokorb® erforderlich werden. Diese Übergreifungsbewehrung wird gegebenenfalls vom Tragwerksplaner angegeben.
- Bei dicken Halbfertigteildecken kann die Aussparung des Halbfertigteils entfallen wenn der Isokorb® T Typ SK komplett in den Aufbeton eingebaut werden kann.
- Nach dem Einbau des Schöck Isokorb® T Typ SK auf der Schalung muss der Beton in der Aussparung und um die Bügelbewehrung herum ordnungsgemäß verdichtet werden.

Stirnplatte

T Typ SK-M1 für die Übertragung eines Momentes und positiver Querkraft

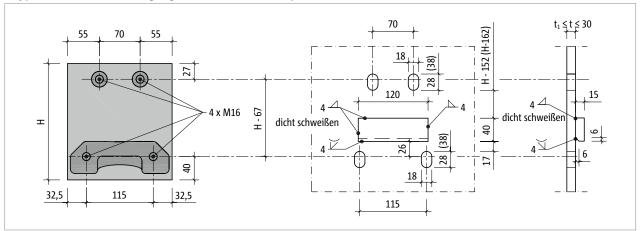


Abb. 144: Schöck Isokorb® T Typ SK-M1: Konstruktion des Stirnplattenanschlusses

T Typ SK-MM1 für die Übertragung eines Momentes und positiver oder negativer Querkraft

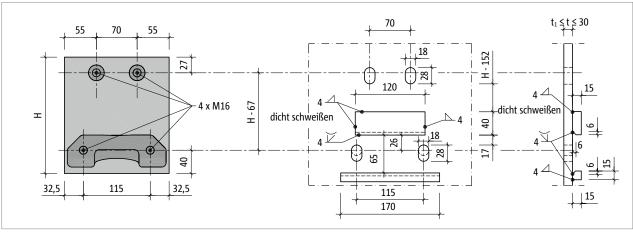


Abb. 145: Schöck Isokorb® T Typ SK-MM1: Konstruktion des Stirnplattenanschlusses; Rundlöcher unten, alternativ Langlöcher und eine zweite Knagge zur Übertragung der negativen Querkraft

Die Auswahl der Stirnplattendicke t richtet sich nach der vom Tragwerksplaner festgelegten Mindestplattendicke t₁. Gleichzeitig darf die Stirnplattendicke t nicht größer sein als die freie Klemmlänge des Schöck Isokorb® T Typ SK.

Stirnplatte

- Die dargestellen Langlöcher erlauben eine Anhebung der Stirnplatte um bis zu 10 mm. Die Maßangaben in den Klammern ermöglichen eine Vergrößerung der Toleranz auf 20 mm.
- Die Flanschabstände der Langlöcher sind zu prüfen.
- Bei planmäßigem Auftreten einer abhebenden Last ist zwischen zwei Ausführungsmöglichkeiten zu wählen:
 Ohne Höhenjustierung: Die Stirnplatte im unteren Bereich mit Rundlöchern (statt Langlöchern) ausbilden.
 Mit Höhenjustierung: Die zusätzliche zweite Knagge in der Kombination mit Langlöchern verwenden.
- Treten parallel zur Dämmfuge Horizontalkräfte V_{Ed,y} > 0,342 min. V_{Ed,z} auf, ist es ebenfalls zur Weiterleitung der Lasten erforderlich, die Stirnplatte im unteren Bereich mit Rundlöchern statt Langlöchern auszubilden.
- Die äußeren Abmessungen der Stirnplatte sind vom Tragwerksplaner festzulegen.
- Im Ausführungsplan ist das Anzugsmoment der Muttern einzutragen; es gilt folgendes Anzugsmoment: T Typ SK-M1, T Typ SK-MM1 (Gewindestange M16 Schlüsselweite s = 24 mm): $M_r = 50$ Nm
- Bevor die Stirnplatten gefertigt werden, sind vor Ort die einbetonierten Schöck Isokorb® aufzumessen.

Stirnplatte

T Typ SK-MM2 für die Übertragung eines Momentes und positiver Querkraft

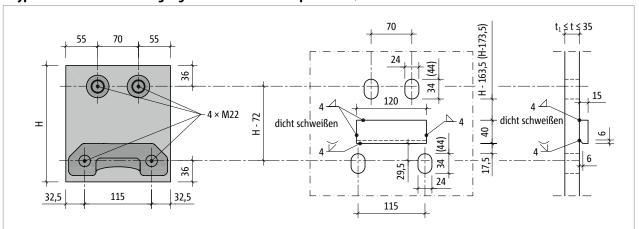


Abb. 146: Schöck Isokorb® T Typ SK-MM2: Konstruktion des Stirnplattenanschlusses

T Typ SK-MM2 für die Übertragung eines Momentes und positiver oder negativer Querkraft

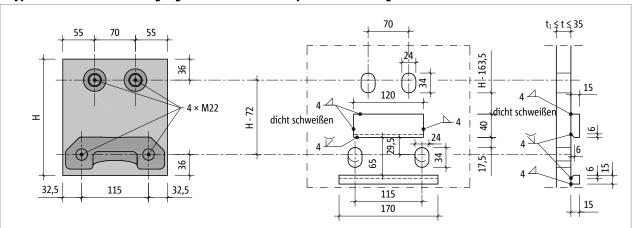


Abb. 147: Schöck Isokorb® T Typ SK-MM2: Konstruktion des Stirnplattenanschlusses; Rundlöcher unten, alternativ Langlöcher und eine zweite Knagge zur Übertragung der negativen Querkraft

Die Auswahl der Stirnplattendicke t richtet sich nach der vom Tragwerksplaner festgelegten Mindestplattendicke t₁. Gleichzeitig darf die Stirnplattendicke t nicht größer sein als die freie Klemmlänge des Schöck Isokorb® T Typ SK.

Stirnplatte

- Die dargestellen Langlöcher erlauben eine Anhebung der Stirnplatte um bis zu 10 mm. Die Maßangaben in den Klammern ermöglichen eine Vergrößerung der Toleranz auf 20 mm.
- Die Flanschabstände der Langlöcher sind zu prüfen.
- Bei planmäßigem Auftreten einer abhebenden Last ist zwischen zwei Ausführungsmöglichkeiten zu wählen:
 Ohne Höhenjustierung: Die Stirnplatte im unteren Bereich mit Rundlöchern (statt Langlöchern) ausbilden.
 Mit Höhenjustierung: Die zusätzliche zweite Knagge in der Kombination mit Langlöchern verwenden.
- Treten parallel zur Dämmfuge Horizontalkräfte V_{Ed,y} > 0,342 min. V_{Ed,z} auf, ist es ebenfalls zur Weiterleitung der Lasten erforderlich, die Stirnplatte im unteren Bereich mit Rundlöchern statt Langlöchern auszubilden.
- Die äußeren Abmessungen der Stirnplatte sind vom Tragwerksplaner festzulegen.
- Im Ausführungsplan ist das Anzugsmoment der Muttern einzutragen; es gilt folgendes Anzugsmoment: T Typ SK-MM2 (Gewindestange M22 - Schlüsselweite s = 32 mm): M_r = 80 Nm
- Bevor die Stirnplatten gefertigt werden, sind vor Ort die einbetonierten Schöck Isokorb® aufzumessen.
- Schöck Isokorb® T Typ SK-MM2 in H180: Maximal 10 mm Toleranz für die Höhenjustierung möglich. Maßgebend ist der Abstand der oberen Langlöcher von der bauseitigen Knagge.

Entwurfshilfen - Stahlbau

Freie Klemmlänge

Die maximale Dicke der Stirnplatte ist durch die freie Klemmlänge der Gewindestangen am Schöck Isokorb® T Typ SK begrenzt.

II Info freie Klemmlänge

T Typ SK: Die freie Klemmlänge beträgt 30 mm bei den Haupttragstufen M1, MM1 und 35 mm bei MM2.

Wahl von Profilträgern

Für die Dimensionierung der Stahlprofile sind für die Anschlusssituationen gemäß Abbildung unten die in der Tabelle angegebenen Mindestgrößen zu empfehlen.

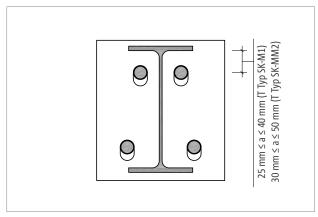


Abb. 148: Schöck Isokorb® T Typ SK-MM2...-H200: Stirnplattenanschluss an Träger IPE220

Schöck Isokorb® T Typ SK		M1,	MM1	MM2		
- (A		a = 2	5 mm	a = 30 mm		
Emplomene Mindestiragerg	Empfohlene Mindestträgergrößen bei		HEA/HEB	IPE	HEA/HEB	
	180	200	200	200	200	
	200	220	220	220	220	
lsokorb®	220	240	240	240	260	
Höhe H [mm]	240	270	280	270	280	
	260	300	300	300	300	
	280	300	320	300	320	

Entwurfshilfen - Stahlbau

II Empfohlene Mindestträgergröße

- Die dargestellten Nennhöhen der Stahlprofile ermöglichen den Stirnplattenanschluss zwischen den Flanschen.
- Langlöcher in der Stirnplatte ermöglichen die Toleranz für die Höhenjustierung des Stahlträgers, siehe Seiten 104, 105.
- Für die Höhenjustierung ist mit der empfohlenen Mindestträgergröße bis zu 20 mm Toleranz möglich. Die Hinweise zu Toleranzeinschränkungen für einzelne Kombinationen der Mindestträgergrößen mit dem Schöck Isokorb® sind zu beachten.
- Schöck Isokorb® T Typ SK-M1, -MM1, in Höhe H180, H200, H220: Mit den empfohlenen Mindestträgergrößen für HEA/HEB ist 10 mm Toleranz möglich. Darüber hinaus erfordert eine Vergrößerung der Langlöcher höhere Träger.
- Schöck Isokorb® T Typ SK-MM2 in H180: Maximal 10 mm Toleranz für die Höhenjustierung möglich. Maßgebend ist der Abstand der oberen Langlöcher von der bauseitigen Knagge.
- Schöck Isokorb® T Typ SK-MM2 in H200: Mit den empfohlenen Mindestträgergrößen für HEA/HEB ist 10 mm Toleranz möglich.
 Darüber hinaus erfordert eine Vergrößerung der Langlöcher höhere Träger.

Bauseitige Knagge

Bauseitige Knagge

Zur Übertragung der Querkräfte von der bauseitigen Stirnplatte auf den Schöck Isokorb® T Typ SK ist die bauseitige Knagge zwingend erforderlich! Die von Schöck mitgelieferten Distanzplättchen dienen zum höhengerechten Formschluss zwischen Knagge und Schöck Isokorb®.

Bauseitige Knagge für die Übertragung positiver Querkraft

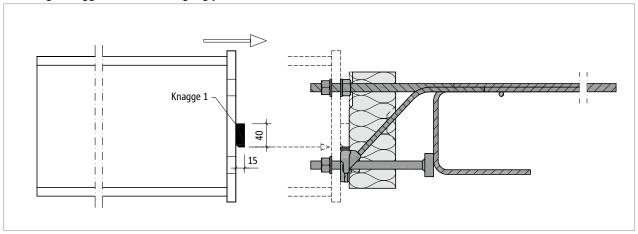


Abb. 149: Schöck Isokorb® T Typ SK: Montage des Stahlträgers

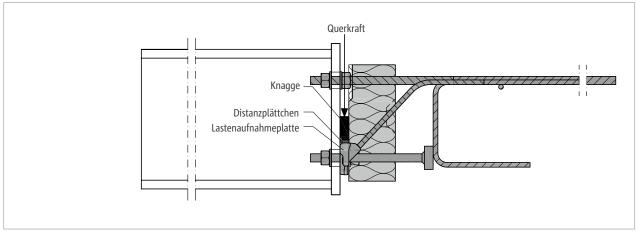


Abb. 150: Schöck Isokorb® T Typ SK: Bauseitige Knagge zur Übertragung der Querkraft

Bauseitige Knagge

- Stahlsorte nach statischen Erfordernissen.
- Korrosionsschutz nach dem Schweißen durchführen.
- Stahlbau: Maßabweichungen des Rohbaus sind unbedingt zu prüfen!

Distanzplättchen

- Maße und Materialangaben, siehe Seite 22
- Beim Einbau auf Gratfreiheit und Ebenheit achten.
- Lieferumfang: 2 2 mm + 1 3 mm Dicke pro Schöck Isokorb®

Bauseitige Knagge

2 bauseitige Knaggen für die Übertragung positiver oder negativer Querkraft

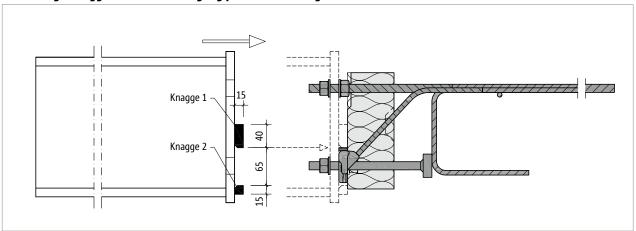


Abb. 151: Schöck Isokorb® T Typ SK: Montage des Stahlträgers

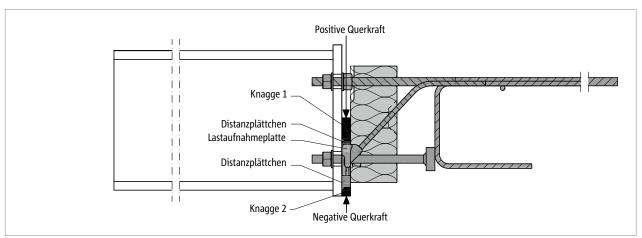
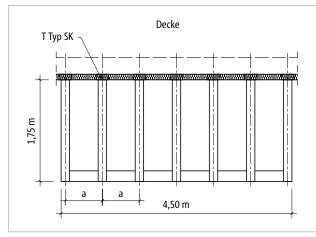


Abb. 152: Schöck Isokorb® T Typ SK: Bauseitige Knaggen zur Übertragung der Querkraft

Bauseitige Knagge


- Stahlsorte nach statischen Erfordernissen.
- Korrosionsschutz nach dem Schweißen durchführen.
- Stahlbau: Maßabweichungen des Rohbaus sind unbedingt zu prüfen!

Distanzplättchen

- Maße und Materialangaben, siehe Seite 22
- Beim Einbau auf Gratfreiheit und Ebenheit achten.
- Lieferumfang: 2 2 mm + 1 3 mm Dicke pro Schöck Isokorb®

Stahl – Stahlbeton

Bemessungsbeispiel

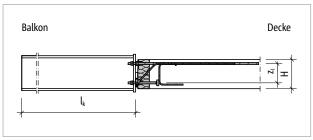


Abb. 154: Schöck Isokorb® T Typ SK: Statisches System; Bemessungswerte beziehen sich auf die dargestellte Kraglänge l_k

Abb. 153: Schöck Isokorb® T Typ SK: Grundriss

Statisches System und Lastannahmen

Geometrie: Auskragungslänge $l_k = 1,75 \text{ m}$

Balkonbreite b = 4,50 m

Dicke der inneren Stahlbetondecke h = 200 mm Für die Bemessung gewählter Achsabstand der Anschlüsse a = 0,7 m

Lastannahmen: Eigengewicht mit leichtem Belag $g = 0.6 \text{ kN/m}^2$

Nutzlast $q = 4.0 \text{ kN/m}^2$ Eigengewicht Geländer $F_G = 0.75 \text{ kN/m}$

Horizontallast auf Geländer in der Holmhöhe 1,0 m $H_G = 0.5 \text{ kN/m}$

Expositionsklasse: innen XC 1

Gewählt: Betonfestigkeitsklasse C20/25 für die Decke

Betondeckung c_v = 20 mm für Isokorb® Zugstäbe

Anschlussgeometrie: kein Höhenversatz, kein Deckenrandunterzug, keine Balkonaufkantung

Lagerung Decke: Deckenrand direkt gelagert

Lagerung Balkon: Einspannung der Kragarme mit Schöck Isokorb® T Typ SK

Nachweise im Grenzzustand der Tragfähigkeit (Momentenbeanspruchung und Querkraft)

Schnittgrößen: $\mathsf{M}_{\mathsf{Ed}} = -[(\gamma_{\mathsf{G}} \cdot \mathsf{g}_{\mathsf{B}} + \gamma_{\mathsf{Q}} \cdot \mathsf{q}) \cdot \mathsf{l}_{\mathsf{k}}^2/2 \cdot \mathsf{a} + \gamma_{\mathsf{G}} \cdot \mathsf{F}_{\mathsf{G}} \cdot \mathsf{a} \cdot \mathsf{l}_{\mathsf{k}} + \gamma_{\mathsf{Q}} \cdot \psi_0 \cdot \mathsf{H}_{\mathsf{G}} \cdot \mathsf{1,0} \cdot \mathsf{a}]$

 $\mathsf{M}_{\mathsf{Ed}} = -[(1,35 \cdot 0,6 + 1,5 \cdot 4,0) \cdot 1,75^2/2 \cdot 0,7 + 1,35 \cdot 0,75 \cdot 0,7 \cdot 1,75 + 1,5 \cdot 0,7 \cdot 0,5 \cdot 1,0]$

• 0,7] = -8,9 kNm

= -8,9 KIVII

 $V_{Ed} = (\gamma_G \cdot g_B + \gamma_Q \cdot q) \cdot a \cdot l_k + \gamma_G \cdot F_G \cdot a$

 V_{Ed} = $(1,35 \cdot 0,6 + 1,5 \cdot 4,0) \cdot 0,7 \cdot 1,75 + 1,35 \cdot 0,75 \cdot 0,7 = +9,1 \text{ kN}$

Erforderliche Anzahl der Anschlüsse: n = (b/a) + 1 = 7,4 = 8 Stück

Achsabstand der Anschlüsse: ((4,50 - 0,18)/7) = 0,617 m, wobei Trägerbreite = Breite Schöck Isokorb® = 0,18 m

Gewählt: 8 Stück Schöck Isokorb® T Typ SK-M1-V1-R0-X80-H200-L180-1.0

 M_{Rd} = -12,9 kNm > M_{Ed} = -8,9 kNm

 V_{Rd} = +10,0 kN (siehe Seite 84) > V_{Ed} = +9,1 kN

Nachweise im Grenzzustand der Gebrauchstauglichkeit (Verformung/Überhöhung) Verformungsfaktor: $\tan \alpha = 0.7$ (aus Tabelle, siehe Seite 87)

Bemessungsbeispiel | Einbauanleitung

Gewählte Lastkombination: $g + 0.3 \cdot q$

(Empfehlung für die Ermittlung der Überhöhung aus Schöck Isokorb®)

 $M_{\text{Ed},\text{GZG}}$ im Grenzzustand der Gebrauchstauglichkeit ermitteln

 $\mathsf{M}_{\mathsf{Ed},\mathsf{GZG}} = -[(g_\mathsf{B} + \psi_{\mathsf{2},\mathsf{i}} \cdot \mathsf{q}) \cdot \mathsf{l}_\mathsf{k}^2/2 \cdot \mathsf{a} + \mathsf{F}_\mathsf{G} \cdot \mathsf{a} \cdot \mathsf{l}_\mathsf{k} + \psi_{\mathsf{2},\mathsf{i}} \cdot \mathsf{H}_\mathsf{G} \cdot \mathsf{1,0} \cdot \mathsf{a}]$

 $\mathsf{M}_{\mathsf{Ed},\mathsf{GZG}} \hspace{0.5cm} = -[(0,6+0,3\cdot 4,0)\cdot 1,75\ ^{2}/2\cdot 0,7+0,75\cdot 0,7\cdot 1,75+0,3\cdot 0,5\cdot 1,0\cdot 0,7] = -2,95\ \mathsf{kNm}$

 $\text{Verformung:} \qquad \qquad \text{w}_{\ddot{u}} \qquad \quad = \left[\tan \alpha \cdot l_{k} \cdot \left(M_{\text{Ed,GZG}} / M_{\text{Rd}} \right) \right] \cdot 10 \, [\text{mm}]$

 $w_{\ddot{u}} = [0,7 \cdot 1,75 \cdot (-2,95/-12,9)] \cdot 10 = 3 \text{ mm}$

Anordnung von Dehnfugen Länge Balkon: 4,50 m < 5,70 m

=> keine Dehnfugen erforderlich

ii Einbauanleitung

Die aktuelle Einbauanleitung finden Sie online unter:

www.schoeck.com/view/6506

☑ Checkliste

Sind die Einwirkungen am Schöck Isokorb® Anschluss auf Bemessungsniveau ermittelt?
Gibt es eine Situation, in der die Konstruktion während der Bauphase für einen Notfall oder eine spezielle Belastung bemessen werden muss?
Sind die Anforderungen an die Gesamttragkonstruktion hinsichtlich Brandschutz geklärt? Sind die bauseitigen Maßnahmen in den Ausführungsplänen eingetragen?
Wirken am Schöck Isokorb® Anschluss abhebende Querkräfte in Verbindung mit positiven Anschlussmomenten?
Ist wegen Anschluss an eine Wand oder mit Höhenversatz statt Schöck Isokorb® T Typ SK der T Typ SK-WU (siehe Seite 80) oder eine andere Sonderkonstruktion erforderlich?
Ist bei der Verformungsberechnung der Gesamtkonstruktion die Überhöhung infolge Schöck Isokorb® berücksichtigt?
Sind Temperaturverformungen direkt dem Isokorb® Anschluss zugewiesen und ist dabei der maximale Dehnfugenabstand berücksichtigt?
Sind die Bedingungen und Maße der bauseitigen Stirnplatte eingehalten?
Ist in den Ausführungsplänen auf die bauseitig zwingend erforderliche Knagge ausreichend hingewiesen?
Ist beim Einsatz des Schöck Isokorb® T Typ SK-MM1 oder T Typ SK-MM2 in Halbfertigteilplatten die deckenseitige Aussparung berücksichtigt?
Ist die jeweils erforderliche bauseitige Anschlussbewehrung definiert?
Ist mit dem Rohbauer und dem Stahlbauer eine sinnvolle Vereinbarung erreicht im Hinblick auf die vom Rohbauer zu erzielende Einbaugenauigkeit des Schöck Isokorb® T Typ SK?
Sind die Hinweise für Bauleitung bzw. Rohbauer in Bezug auf die erforderliche Einbaugenauigkeit in die Schalpläne übernommen?
Sind die Anzugsmomente der Schraubenverbindung im Ausführungsplan vermerkt?